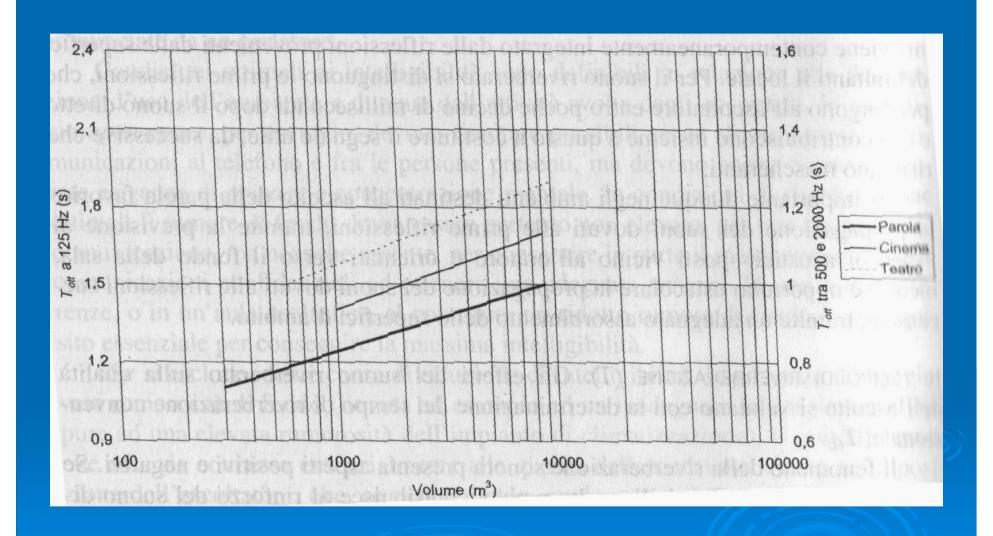
PROGETTAZIONE ACUSTICA DELLE SALE E INDICI DI CARATTERIZZAZIONE

musica&spazi – Il Edizione, Workshop, Chieri 2006

Alcuni aspetti preliminari da considerare per il progetto acustico

- La destinazione d'uso:
 - ascolto della musica (classica, amplificata, opera)
 - ascolto della parola (sale conferenze, teatri di prosa)
 - sale multifunzionali (acustica variabile, acustica 'compromesso')
- La capienza
- Le specifiche di norme (sicurezza, antincendio)
- Il budget


Destinazione d'uso

T60

è il tempo necessario affinché la pressione acustica nell'ambiente diminuisca di 60 dB, in seguito allo spegnimento della sorgente

Destinazione d'uso dell'ambiente	Tempo di riverbero ottimale (s)
Aula scolastica piccola	0,5
Aula scolastica grande/ Sala conferenza	1,0
Cinema/Studio di registrazione	0,7 ÷ 0,8
Sala concerti	1,7 ÷ 2,3
Chiesa di grandi/piccole dimensioni	8,0 ÷ 10,0 o 2,5 ÷ 5,0

Tempo di riverberazione

Il calcolo del tempo di riverberazione

La formula di Sabine

$$T60 = 0.16 \cdot \frac{V}{A_{tot}}$$

Area totale di assorbimento acustico

$$A_{tot} = \sum_{i=1}^{k} a_i \cdot S_i + \sum_{j=1}^{m} n_j \cdot A_j$$

```
a<sub>i</sub> [-] = coefficiente di assorbimento acustico dell'i-esima superficie
```

S_i [m2] = area dell'i-esima superficie

k [-] = numero di superfici

n_i [-] = numero di unità assorbenti del j-esimo tipo

A_i [m2] = assorbimento di una unità del j-esimo tipo

m [-] = numero di tipi di unità assorbenti

Coefficienti di assorbimento acustico di alcuni materiali

	Frequenza					
Materiale	125	250	500	1000	2000	4000
Muratura in mattoni	0,05	0,04	0,02	0,04	0,05	0,05
Marmo o piastrelle lucide	0,05	0,05	0,05	0,05	0,05	0,05
Intonaco su muro pieno	0,04	0,05	0,06	0,08	0,04	0,06
Lastre di gesso sp.9 mm, interc. 18 mm	0,30	0,20	0,15	0,05	0,05	0,05
Pannelli in legno compensato sp.5 mm, intercap.50 mm riempita in lana di vetro	0,40	0,35	0,20	0,15	0,05	0,05
Battuto di cemento	0,05	0,05	0,05	0,05	0,05	0,05
Parquet di legno su cemento	0,04	0,04	0,07	0,06	0,06	0,07
Intonaco acustico	0,10	0,15	0,20	0,25	0,30	0,35

Gli indici di caratterizzazione acustica

• miglioramento delle tecniche di misura

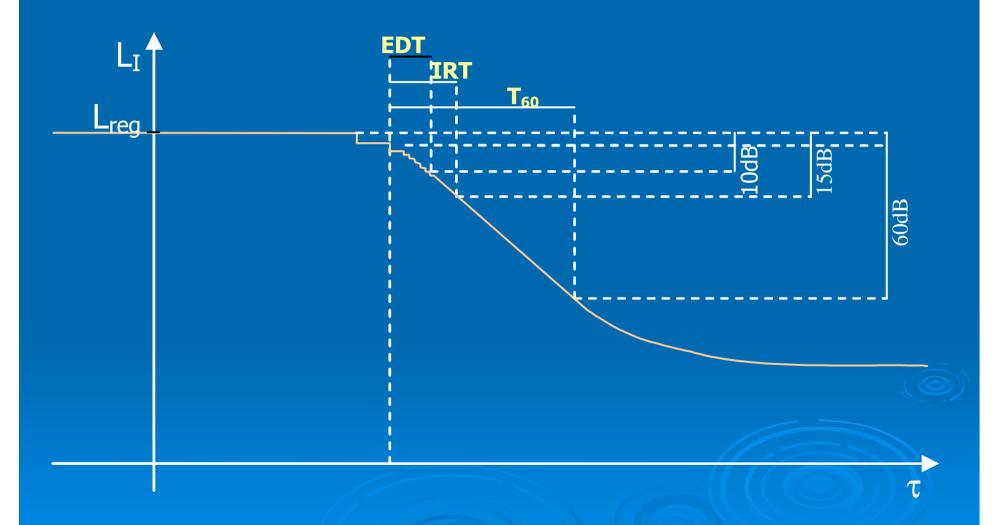
definizione di nuovi indici

• introduzione di nuovi strumenti analitici

Intuizione di M.R.Schroeder (1965), per il calcolo del tempo di riverberazione a partire dalla

metodo più accurato e ricco di informazioni

Altra tecnica di indagine sono le misurazioni binaurali


permettono di studiare in modo più accurato la percezione umana (bicanale) del fenomeno sonoro

Quali indici sono utili per la definizione di una buona acustica?

Quali di questi sono accettabili per una standardizzazione e per fornire indicazioni pratiche per la progettazione?

musica&spazi - Il Edizione, Workshop, Chieri 2006

Tempi di riverberazione

L'introduzione di descrittori fisici è fondata sull'ipotesi che un certo effetto soggettivo è determinato da una parte iniziale di "energia utile" della risposta impulsiva:

D

Definizione (Deutlichkeit) introdotto da Thiele

$$D = \frac{\int_{0}^{50 \, \text{ms}} p^{2}(t) dt}{\int_{0}^{\infty} p^{2}(t) dt}$$

C80

Chiarezza (Klarheitsmass) introdotto da Richard et al.

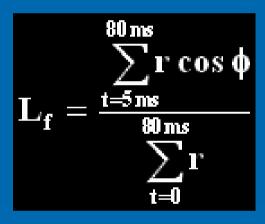
$$C_{80} = 10 \cdot log \frac{\int_{\infty}^{80ms} p^{2}(t)dt}{\int_{80ms}^{\infty} p^{2}(t)dt}$$

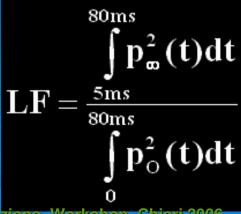
T_s

Istante baricentrico dell'energia o tempo centrale introdotto da Kurer

$$t_s = \frac{\int_0^\infty t \cdot p^2(t) dt}{\int_0^\infty p^2(t) dt}$$

L "impressione spaziale", fa riferimento alla sensazione di essere in uno spazio tridimensionale, di sentirsi avvolto dal suono e di percepire la fonte sonora più estesa di quanto può apparire all'aperto


L_{f}


frazione della prima energia laterale

introdotto da Barron e Marshall

LF

prima frazione di energia laterale

presuppone l'utilizzo di un microfono in configurazione ad otto

LE

Efficienza laterale introdotta da Jordan

$$LE = \frac{\int\limits_{0}^{80\text{ms}} p_{\infty}^2(t)dt}{\int\limits_{0}^{25\text{ms}} p_{0}^2(t)dt}$$

L'estremo inferiore di integrazione vuole escludere il contributo del suono diretto.

LLF

Ultima frazione di energia laterale

$$LLF = \frac{\int_{\infty}^{T} p_{\infty}^{2}(t)dt}{\int_{80ms}^{T} p_{O}^{2}(t)dt}$$

T è pari a 0,4 volte il tempo di riverberazione

Indici di intensità

La prima definizione si deve a Wilkens et al:

G

indice di intensità (Stärkemβ)

$$G = 10 \cdot \log \frac{\int_{0}^{\infty} p^{2}(t)dt}{4 \cdot \pi \cdot s^{2} \int_{0}^{\Delta t} p^{2}(s, t)dt}$$

s è la distanza sorgente-ricevitore, pari a 5 m per gli studi di Wilkens.

Il G può essere interpretato come la differenza tra il livello della pressione sonora nel punto di ascolto ed il livello della potenza sonora emessa dalla sorgente

$$G = L_p - L_w + 31$$

Descrittore per il LEV:

LG_{80,∞}
introdotto da
Bradley e
Soulodre

$$LG_{80,m} = 10 \cdot log \frac{\int\limits_{m}^{m} p_{m}^{2}(t)dt}{\int\limits_{0}^{80ms} p_{10}^{2}(t)dt}$$

Hanyu e Kimura hanno confermato una dipendenza del LEV anche dal $t_{\rm s}$ e da EDT

Tuttavia, non è ancora possibile trarre una conclusione definitiva su quale parametro descriva meglio il LEV.

La relazione tra indici oggettivi e qualità soggettive:

Qualità soggettiva	Indice oggettivo
Chiarezza	C80
Riverberazione	early decay time, EDT , T60
Intimacy	Indice di intensità (sound strenght), G
Ampliamento della sorgente (source broadening)	Frazione di prima energia laterale, LF, e indice di intensità, G
Avvolgimento o avviluppo dell'ascoltatore (listener envelopment)	Livello relativo (guadagno) dell'ultima energia sonora o indice di intensità dell'ultima energia sonora, LG
Loudness (intensità percepita)	Indice di intensità (sound strenght), G
Brillantezza	Bilanciamento delle frequenze medio-alte
Calore	Bilanciamento dei bassi

musica&spazi - Il Edizione, Workshop, Chieri 2006

La relazione tra qualità acustiche, caratteristiche architettoniche e fenomeni fisici in un ambiente:

Fenomeno fisico	Qualità acustica	Caratteristica architettonica
Prime riflessioni laterali	Avvolgimento del suono	Larghezza della sala (entro 20- 25 m)
Prime riflessioni frontali	Chiarezza	Soffitto riflettente Camera acustica sul palco
Coda sonora	Riverberazione	Grande volume Materiali riflettenti
Prime riflessioni delle pareti e del soffitto	Intensità del suono	Dimensioni della sala non eccessive (1000-1200 posti)
Prime riflessioni, entro pochi millisecondi dall'arrivo del suono diretto	Intimità	Sorgente sonora e pubblico nello stesso volume architettonico
Riflessioni dopo i primi 80 ms	Spazialità	Strutture diffondenti Grandi volumi

La NORMA ISO 3382

La norma appare nel 1997 con titolo "Measurement of the reverberation time of rooms with reference to other acoustic parameters", comprende diverse parti:

- una Parte 1 che concerne principalmente gli spazi per performance, ovvero le sale da concerto e in genere per la musica
- una Parte 2 per la misurazione del tempo di riverberazione in camere ordinarie, per la quali l'accuratezza delle misurazioni è inferiore
- un Appendice A che riporta diversi parametri derivati dalla risposta all'impulso
- un Appendice B che introduce misurazioni binaurali mediante uso di testa artificiale
- un Appendice C che fornisce supporto per misurazioni per la valutazione delle condizioni acustiche dal punto di vista dei musicisti musica&spazi Il Edizione, Workshop, Chieri 2006

prima standardizzazione dei metodi di misura ed elaborazione dei dati di un parametro oggettivo di qualità acustica: il **T60**

Descrive due metodi per la determinazione del T60, mediante:

- misura della risposta all'impulso
- misura del decadimento del rumore interrotto

PROCEDURE MISURAZIONE

La norma indica in modo preciso le procedure da seguire per la misurazione degli indici, in termini di calibrazione, posizioni della sorgente, posizioni del microfono.

In particolare indica il numero minimo di posizioni del microfono in funzione delle dimensioni dell'auditorium:

Numero di posti	Numero minimo di posizioni microfoniche
500	6
1000	8
2000	10

musica&spazi – Il Edizione, Workshop, Chieri 2006

La norma individua cinque attributi percettivo-soggettivo principali

Aspetto soggettivo	Parametro acustica (oggettivo)	Frequenze mediate (Hz)	Just Noticeable Difference (JND)	Range tipico
Livello del suono soggettivo	Indice di intensità, G (dB)	da 500 a 1000	1 dB	da -2 dB a +10 dB
Riverberazione percepita	Early Decaly Time, EDT (s)	da 500 a 1000	Rel. 5%	da 1,0 s a 3,0 s
Chiarezza del suono percepita	Chiarezza, ,C80 (dB) Definizione, D50 (-) Tempo centrale, TS (ms)	da 500 a 1000 da 500 a 1000 da 500 a 1000	1 dB 0,05 10 ms	da -5 dB a + 5dB da 0,3 a 0,7 da 60 ms a 260 ms
Ampiezza apparente del suono	Early Lateral Energy Fraction, LF (-) o LFC (-)	da 125 a 100	0,05	da 0,05 a 0,35
Avvolgimento sonoro	Late Lateral Sound Level, LG (dB)	da 125 a 1000	1 dB?	da -7 dB a +3 dB

ISO 3382 - Appendice A - Tabella A1

Definizione dei parametri secondo la ISO 3382 (Appendice A):

Indice di intensità

$$G = 10 \cdot \log_{10} \frac{\int\limits_{0}^{\infty} p^{2}(t)dt}{\int\limits_{0}^{\infty} p_{10}^{2}(t)dt} = L_{pE} - L_{pE,10}$$

 $L_{\text{pE10}}\,$ e $\,L_{\text{pE10}}\,$ sono i livelli di pressione sonora prodotti dalla sorgente nel punto di ascolto e a $\,10\,$ m di distanza in campo libero

Livello (guadagno) relativo dell'ultima energia sonora, LG

$$LG = 10 \cdot log \begin{bmatrix} \int_{0.08 \, s}^{\infty} p_L^2(t) dt \\ \frac{\int_{0.08 \, s}^{\infty} p_{10}^2(t) dt \\ \int_{0}^{\infty} p_{10}^2(t) dt \end{bmatrix}$$

risulta correlato al senso di avviluppo sonoro dell'ascoltatore o "spaziosità" Indice early-to-late

$$C_{te} = 10 \cdot log \frac{\int_{\infty}^{t_e} p^2(t) dt}{\int_{0}^{\infty} p^2(t) dt}$$

dove t_e è il primo limite di tempo, pari a 50 ms o 80 ms (C80 è l'indice di "chiarezza")

Tempo centrale, T_s

$$T_{S} = \frac{\int_{0}^{\infty} t \cdot p^{2}(t)dt}{\int_{0}^{\infty} p^{2}(t)dt}$$

evita la suddivisione discreta della risposta all'impulso in early e late

Frazione di energia laterale, LF

$$LF = \frac{\int_{0,005 \, s}^{0,08s} p_L^2(t) dt}{\int_{0,08 \, s}^{0,005 \, s} p^2(t) dt}$$

presuppone l'utilizzo di un microfono in configurazione ad otto

Frazione di energia laterale dipendente dal coseno, LFC (Appendice B)

LFC =
$$\frac{\int\limits_{0,005s}^{0,08s} \left| \mathbf{p}_{L}^{2}(t) \cdot \mathbf{p}(t) \right| dt}{\int\limits_{0,08s}^{0,08s} \mathbf{p}^{2}(t) dt}$$

risulta più accurato per la risposta soggettiva rispetto I F Funzione di autocorrelazione interaurale, IACF

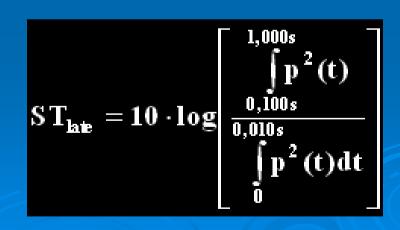
$$\begin{split} IACF_{t_1,t_2}(\tau) &= \frac{\int\limits_{t_1}^{t_2} p_1(t) \cdot p_r(t+\tau) dt}{\int\limits_{t_1}^{t_2} p_1^2(t) dt \int\limits_{t_1}^{t_2} p_r^2(t) dt} \end{split}$$

dove $p_l(t)$ è la risposta all'impulso all'orecchio sinistro e $p_r(t)$ è quella all'orecchio destro

L'indice di auto-correlazione inteaurale o coefficiente di correlazione mutua interaurale è dato da

$$IACC_{t_1t_2} = max \Big| IACF_{t_1t_2}(\tau) \Big|$$

per -1 ms
$$< \tau < + 1$$
 ms


Valutazione dell'acustica dal punto di vista dei musicisti (Appendice C)

Primo supporto (Early support), ST_{early}

$$ST_{early} = 10 \cdot log egin{bmatrix} 0,100s \ \int p^2(t) \ rac{0,020s}{0,020s} \ \sqrt{p^2(t)dt} \end{bmatrix}$$

è correlato al senso di "ensemble"

Supporto tardivo (Late support), ST_{late}

è correlato alla riverberazione percepita Resta ancora un mistero l'effetto soggettivo dovuto alla presenza di superfici diffondenti alle pareti e al soffitto delle sale.

Esiste qualche evidenza sul fatto che gli ascoltatori preferiscono condizioni di diffusione.

Lo stato di diffusione resta ancora da quantificare in modo soddisfacente.

La ricerca è ancora aperta sulla definizione stessa degli indici e sulla precisa correlazione di questi con gli attributi percettivo-soggettivi.

BIBLIOGRAFIA

ISO 3382:2004 - Acoustics – Measurement of the reverberation time

S.Cingolani, R.Spagnolo, Acustica musicale e architettonica, ed UTET, 2005

M.Barron, ISO 3382 - How good are rhe acoustics really?, Atti ICA 2004

M.Barron, The current status of spatial impression in concert halls, Atti ICA 2004

M.Barron, Late lateral energy fractions and envelopment question in concert halls, 2000

M.Barron, L.-J. Lee, Energy relations in concert auditoriums.I, J.Acoust.AM., 84 (2), 1988

S.Chiles, M.Barron, Distribution of reflected levels in rooms with diffuse sound fields, Atti ICA 2004

C.Ianniello, *Auditori e sale da concerto. Aspetti soggettivi e criteri oggettivi*. Rivista italiana di acustica, vol. IX, N., 1987

C.Ianniello, *La qualità del suono nelle sale da concerto. Aspetti soggettivi e criteri oggettivi*. Rivista italiana di acustica, vol. IX, N.2, 1985

R.J.Orlowski, *The relevance of ISO 3382 in Auditorium Design and Measurement*, Atti ICA 2004